

Applying Pharmacogenomic (PGx) Testing to Tacrolimus Pharmacotherapy

Tacrolimus efficacy & CYP3A5 function

Individuals with increased *CYP3A5* function have up to a **32% increased relative risk**[†] of acute kidney transplant rejection.¹

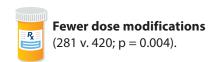
32%

[†]In a meta-analysis of 21 studies in over 2,100 kidney transplant patients comparing **extensive (or normal) or intermediate** to **poor CYP3A5 metabolizers**. The follow-up among studies varied between ≤1 month to 12 months.¹

PGx testing confirms CYP3A5 genetic variation and optimizes initial dosing regimens

- ☑ Tacrolimus is an immunosuppressant commonly used for prevention of liver, pancreas, kidney, heart, intestinal, lung, and hematopoietic stem cell transplant rejection.²
- Roughly 40 to 50% of the narrow therapeutic index and wide pharmacokinetic variability for tacrolimus is attributed to the cytochrome P450 3A5 (CYP3A5) enzyme.² Tacrolimus metabolism is also thought to be influenced by CYP3A4 variation as well though this impact remains unclear.³
- Poor CYP3A5 function is highly prevalent and informs current standard initial weight based tacrolimus dosing. Maintenance doses are adjusted by blood concentration levels.^{2,3}
- ☑ Subtherapeutic tacrolimus blood levels are associated with **increased risk of rejection** and supratherapeutic levels increase the risk of adverse effects.^{3,4}

Evidence for genotype-guided dosing


A prospective trial randomized 280 kidney transplant patients to receive either standard or **CYP3A5 genotype-guided dosing** and found genotype-guided dosing resulted in the following benefits compared to standard dosing:⁴

More patients achieved therapeutic tacrolimus levels after six oral doses (43.2% v. 29.1%; p = 0.03).

target tacrolimus concentrations on day eight compared to day 25 (p = 0.001).

Food & Drug Administration (FDA) PGx associations for tacrolimus and CYP3A55

Extensive (or normal) or intermediate metabolizers have lower systemic tacrolimus concentration, a lower probability of achieving target concentrations and likely a higher risk for rejection. Measure drug concentrations and adjust dosage based on trough whole blood tacrolimus concentrations.

What should I know about genotype-guided tacrolimus dosing?

- ☑ Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines apply to kidney, heart, lung, and hematopoietic stem cell and liver transplants in which the donor and recipient have identical genotypes.³
- When selecting an initial tacrolimus dose, consider **drug-drug interactions**, **liver function**, **and other clinical conditions** in addition to *CYP3A5* genotype.³
- ☑ CYP3A5 genotyping should **not** replace therapeutic drug monitoring (TDM). More evidence is needed to evaluate long-term transplant related clinical outcomes.³

Table 1. CPIC initial dosing recommendations for tacrolimus & CYP3A5§3

<i>CYP3A5</i> Genotype	Diplotypes	CYP3A5 Phenotype	Implication	Therapeutic Recommendations
Two functional alleles	*1/*1	Extensive (or normal) metabolizer [†] (expressor)	Lower dose-adjusted trough concentrations of tacrolimus and decreased chance of achieving target concentrations.	Increase initial dose 1.5 to 2 times recommended starting dose. Total starting dose should not exceed 0.3 mg/kg/day. Use TDM to guide dose adjustments.
One functional and one nonfunctional allele	*1/*3, *1/*6, *1/*7	Intermediate metabolizer (expressor)		
Two nonfunctional alleles	*3/*3, *6/*6, *7/*7, *3/*6, *3/*7, *6/*7	Poor metabolizer (nonexpresser)	Higher ("normal") dose-adjusted trough concentrations of tacrolimus and increased chance of achieving target concentrations.	Initiate therapy with standard recommended dose. Use TDM to guide dose adjustments.

⁶CPIC guidelines were published in 2015 and therefore, did not include data on extended-release formulations approved in the same year.

A note on ancestry

While more prevalent in certain populations, *CYP3A5* variant alleles have been seen across most major ancestral groups.⁶ **PGx testing is the only way to confirm the presence of a variant allele**.

Clinical pharmacist practitioners (CPP)

PGx and transplant CPPs can evaluate pharmacotherapy based on the PGx test results, provide therapy recommendations, and contact patients for follow-up education.

REFERENCES: 1. Rojas L, Neumann I, Herrero MJ, et al. Effect of *CYP3A5*3* on kidney transplant recipients treated with tacrolimus: a systematic review and meta-analysis of observational studies. *Pharmacogenomics J*. Feb 2015;15(1):38-48. doi:10.1038/tpj.2014.38 **2.** Yu M, Liu M, Zhang W, Ming Y. Pharmacokinetics, Pharmacodynamics and Pharmacogenetics of Tacrolimus in Kidney Transplantation. *Curr Drug Metab*. 2018;19(6):513-522. doi:10.2174/1389200219666180129151948 **3.** Birdwell KA, Decker B, Barbarino JM, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for *CYP3A5* Genotype and Tacrolimus Dosing. *Clin Pharmacol Ther*. Jul 2015;98(1):19-24. doi:10.1002/cpt.113 **4.** Thervet E, Loriot MA, Barbier S, et al. Optimization of initial tacrolimus dose using pharmacogenetic testing. *Clin Pharmacol Ther*. Jun 2010;87(6):721-6. doi:10.1038/clpt.2010.17 **5.** Table of Pharmacogenetic Associations. 2022. **6.** Supplemental Table S3. Frequencies of *CYP3A5* alleles in major race/ethnic groups PharmGKB.

[†]Nomenclature varies between guidelines, literature, and reference laboratory reports. Extensive metabolizers or expressors are sometimes also referred to as normal metabolizers due to the high frequency of this phenotype.